NOTE

Bernstein Polynomials and Modulus of Continuity ${ }^{1}$

Zhongkai Li
Department of Mathematics, Capital Normal University, Beijing 100037,
People's Republic of China
E-mail: lizk@mail.cnu.edu.cn
Communicated by Zeev Ditzian

Received June 8, 1998; accepted in revised form March 25, 1999

This note describes several properties related to smoothness which are preserved by the operator given by Bernstein polynomials. © 2000 Academic Press

The Bernstein polynomials

$$
B_{n}(f ; x)=\sum_{j=0}^{n} f\left(\frac{j}{n}\right) p_{n, j}(x), \quad p_{n, j}(x)=\binom{n}{j} x^{j}(1-x)^{n-j}
$$

of a given function $f(x)$ on $[0,1]$, besides the convergence and approximation, preserve some properties of the original function. For example:
(i) if $f(x)$ is non-decreasing, then for all $n \geqslant 1$, the $B_{n}(f ; x)$ are nondecreasing;
(ii) if $f(x)$ is convex, then for all $n \geqslant 1$, the $B_{n}(f ; x)$ are convex and

$$
B_{n}(f ; x) \geqslant B_{n+1}(f ; x) \geqslant f(x), \quad x \in[0,1] ;
$$

for other examples, cf. [7, Sect. 1.7; 5, Sect. 6.3]. Further studies on the convexity of the Bernstein polynomials can be found in [3, 4, 9]. Another property that the Bernstein polynomials preserve, proved by an elementary method in [2] (cf. [1] also), is that
(iii) if $f \in \operatorname{Lip}_{A} \mu$, then for all $n \geqslant 1, B_{n}(f ; x) \in \operatorname{Lip}_{A} \mu$.

A function f belongs to the Lipschitz class $\operatorname{Lip}_{A} \mu$ where $0<\mu \leqslant 1$ and $A \geqslant 0$ if $\omega(f ; t) \leqslant A t^{\mu}$ for $0<t \leqslant 1$, where $\omega(f ; t)=\max _{\left|x_{2}-x_{1}\right| \leqslant t} \mid f\left(x_{2}\right)-$ $f\left(x_{1}\right) \mid$ is the modulus of continuity of $f(x)$. The interesting and important

[^0]thing of the fact in (iii) is that each of the Bernstein polynomials for $n \geqslant 1$ has the same Lipschitz order and the same Lipschitz constant as in the original function.

The aim of this note is to show a more general conclusion than (iii) and two new properties preserved by the Bernstein polynomials. A function $\omega(t)$ on [0,1] is called a modulus of continuity if $\omega(t)$ is continuous, nondecreasing, semi-additive, and $\lim _{t \rightarrow 0+} \omega(t)=\omega(0)=0$. We denote the class of continuous functions on [0,1] satisfying the inequality $\omega(f ; t) \leqslant \omega(t)$ by H^{ω}. We will prove that
(iii)* if $\omega(t)$ is a modulus of continuity, then $f \in H^{\omega}$ implies that for all $n \geqslant 1, B_{n}(f ; x) \in H^{2 \omega}$; if $\omega(t)$ is concave (upper convex), then $f \in H^{\omega}$ implies that for all $n \geqslant 1, B_{n}(f ; x) \in H^{\omega}$;
(iv) if $\omega(t)$ is a modulus of continuity, then for each $n \geqslant 1, B_{n}(\omega ; t)$ is also a modulus of continuity and $B_{n}(\omega ; t) \leqslant 2 \omega(t)$; if $\omega(t)$ is concave, then for each $n \geqslant 1, B_{n}(\omega ; t)$ is a concave modulus of continuity and $B_{n}(\omega ; t) \leqslant \omega(t)$;
(v) if $f(x)$ is a non-negative function such that $x^{-1} f(x)$ is nonincreasing on $(0,1]$, then for each $n \geqslant 1, x^{-1} B_{n}(f ; x)$ is non-increasing also.

The conclusions in (iii)*, (iv), and (v) are closely connected, which can be seen from the following propositions:
(a) if $f(x)$ is concave on $[0,1]$ and $f(0)=0$, then $x^{-1} f(x)$ is nonincreasing on $(0,1]$;
(b) if $f(x)$ is a function such that $f(0)=0$ and $x^{-1} f(x)$ is nonincreasing on $(0,1]$, then $f(x)$ is semi-additive, i.e., $f\left(x_{1}+x_{2}\right) \leqslant f\left(x_{1}\right)+$ $f\left(x_{2}\right)$, for $x_{1}, x_{2}, x_{1}+x_{2} \in[0,1]$.

The proofs of (iii)*, (iv), and (v) are elementary and those of (iii)* and (iv) are only based on the following two representations of the Bernstein polynomial $B_{n}(f ; x)$ derived in [2],

$$
\begin{align*}
& B_{n}\left(f ; x_{1}\right)=\sum_{k=0}^{n} \sum_{l=0}^{n-k} q_{n, k, l}\left(x_{1}, x_{2}\right) f\left(\frac{k}{n}\right), \tag{1}\\
& B_{n}\left(f ; x_{2}\right)=\sum_{k=0}^{n} \sum_{l=0}^{n-k} q_{n, k, l}\left(x_{1}, x_{2}\right) f\left(\frac{k+l}{n}\right), \tag{2}
\end{align*}
$$

where $q_{n, k, l}\left(x_{1}, x_{2}\right)=(n!/(k!l!(n-k-l)!)) x_{1}^{k}\left(x_{2}-x_{1}\right)^{l}\left(1-x_{2}\right)^{n-k-l}$.
Proof of (iv). For any modulus $\omega(t)$ of continuity and $n \geqslant 1$, the Bernstein polynomial $B_{n}(\omega ; t)$ is continuous, non-decreasing, and satisfies
$\lim _{t \rightarrow 0} B_{n}(\omega, t)=B_{n}(\omega, 0)=\omega(0)=0$. Making use of (1), (2), and the semiadditivity of $\omega(t)$, repeating the computation in [2, p. 198] gives that for $0 \leqslant t_{1}<t_{2} \leqslant 1$ and $t_{1}+t_{2} \leqslant 1$,

$$
\begin{aligned}
B_{n}\left(\omega ; t_{2}\right)-B_{n}\left(\omega ; t_{1}\right) & =\sum_{k=0}^{n} \sum_{l=0}^{n-k} q_{n, k, l}\left(t_{1}, t_{2}\right)\left(\omega\left(\frac{k+l}{n}\right)-\omega\left(\frac{k}{n}\right)\right) \\
& \leqslant \sum_{k=0}^{n} \sum_{l=0}^{n-k} q_{n, k, l}\left(t_{1}, t_{2}\right) \omega\left(\frac{l}{n}\right) \\
& =B_{n}\left(\omega ; t_{2}-t_{1}\right),
\end{aligned}
$$

which shows the semi-additivity of $B_{n}(\omega ; t)$, so that $B_{n}(\omega ; t)$ is a modulus of continuity.

If $\omega(t)$ is concave, it follows from (ii) that for each $n \geqslant 1, B_{n}(\omega ; t)$ is concave and $B_{n}(\omega ; t) \leqslant \omega(t)$. If $\omega(t)$ is not concave, then by [8, Theorem 3.2-3; 6, Lemma 7.1.5], there is a concave modulus $\omega^{*}(t)$ of continuity such that

$$
\begin{equation*}
\omega(t) \leqslant \omega^{*}(t) \leqslant 2 \omega(t), \tag{3}
\end{equation*}
$$

so that $B_{n}(\omega ; t) \leqslant B_{n}\left(\omega^{*} ; t\right) \leqslant \omega^{*}(t) \leqslant 2 \omega(t)$. This finishes the proof of (iv).
Again repeating the computation in [2, p. 198] and applying (iv) prove (iii)*.

Proof of (v). Suppose $f(x)$ is a non-negative function such that $x^{-1} f(x)$ is non-increasing on $(0,1]$. Direct computation gives that for $n \geqslant 1$,

$$
\begin{aligned}
\frac{d}{d x}\left\{x^{-1} B_{n}(f ; x)\right\}= & \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{d}{d x}\left\{\frac{p_{n, k}(x)}{x}\right\}+f(0) \frac{d}{d x}\left\{\frac{(1-x)^{n}}{x}\right\} \\
= & -\sum_{k=1}^{n-1}\left[\left(\frac{k}{n}\right)^{-1} f\left(\frac{k}{n}\right)-\left(\frac{k+1}{n}\right)^{-1} f\left(\frac{k+1}{n}\right)\right] \\
& \times k x^{-1} p_{n-1, k}(x)-\frac{[1+(n-1) x] f(0)}{x^{2}(1-x)^{1-n}},
\end{aligned}
$$

which is non-positive by assumption. Hence $x^{-1} B_{n}(f ; x)$ is non-increasing.
Remark. (1) Set $f(x)=x \log ^{2}(e / 2+1 / x), x \in(0,1]$, and $f(0)=0$. It is easy to find that $f(x)$ is increasing and $x^{-1} f(x)$ is decreasing, but $f^{\prime \prime}(x)$ changes in sign at $x_{0}=2 / e \in(0,1)$, which means that $f(x)$ does not remain concave on $[0,1]$. This example shows that the property (v) is different from (ii).
(2) The following example indicates that for non-concave modulus of continuity, the inequality $B_{n}(\omega ; t) \leqslant 2 \omega(t)$ and that $f \in H^{\omega}$ implies $B_{n}(f ; x) \in H^{2 \omega}$ for all $n \geqslant 1$ cannot be improved.

For $n \geqslant 2$, we put

$$
\omega_{n}(t)= \begin{cases}n^{2} t, & 0 \leqslant t \leqslant n^{-2} ; \\ 1, & n^{-2} \leqslant t \leqslant 1-n^{-2} ; \\ n^{2}(t-1)+2, & 1-n^{-2} \leqslant t \leqslant 1,\end{cases}
$$

and $f_{n}(x)=\omega_{n}(x)$. It is obvious that $\omega_{n}(t)$ is a modulus of continuiy and $\omega\left(f_{n} ; t\right)=\omega_{n}(t)$. For $n \geqslant 2$, we have $B_{n}\left(f_{n} ; x\right)=B_{n}\left(\omega_{n} ; x\right)=1+x^{n}-(1-x)^{n}$, so that $\lim _{n \rightarrow \infty} B_{n}\left(f_{n} ; 1-n^{-2}\right)=2$. It follows that for sufficiently large n, $B_{n}\left(f_{n} ; 1-n^{-2}\right)>2-\varepsilon$, consequently, $\omega\left(B_{n}\left(f_{n}\right) ; 1-n^{-2}\right) \geqslant B_{n}\left(f_{n} ; 1-n^{-2}\right)-$ $B_{n}\left(f_{n} ; 0\right)=B_{n}\left(f_{n} ; 1-n^{-2}\right)>(2-\varepsilon) f_{n}\left(1-n^{-2}\right)=(2-\varepsilon) \omega_{n}\left(f_{n} ; 1-n^{-2}\right)$.
(3) Finally, we propose the following problem. In (iii)* and (iv), restricting to the class of modulus of continuity such that the $t^{-1} \omega(t)$ are non-increasing, does there exist a number c, less than 2 , such that $B_{n}(\omega ; t) \leqslant c \omega(t)$ and $B_{n}(f ; x) \in H^{c \omega}$ for all $n \geqslant 1$ provided $f \in H^{\omega}$? If it does, find out the smallest number c^{*}.

It should be noted that the inequalities in (3) cannot be improved, even for the class of modulus of continuity such that $t^{-1} \omega(t)$ are non-increasing.

ACKNOWLEDGMENTS

The author thanks Professor Z. Ditzian for his useful suggestions. He also thanks Dr. Chungou Zhang and Dr. Heping Wang for their helpful discussion.

REFERENCES

1. W. R. Bloom and D. Elliott, The modulus of continuity of the remainder in the approximation of Lipschitz functions, J. Approx. Theory 31 (1981), 59-66.
2. B. M. Brown, D. Elliott, and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory 49 (1987), 196-199.
3. G. Z. Chang and P. J. Davis, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40 (1984), 11-28.
4. G. Z. Chang and J. Z. Zhang, Converse theorems of convexity for Bernstein polynomials over triangles, J. Approx. Theory 61 (1990), 265-278.
5. P. J. Davis, "Interpolation and Approximation," Blaisdell, Waltham, MA, 1963.
6. N. P. Korneichuk, "Extremal Problems in Approximation Theory," Moscow, 1976. [In Russian]
7. G. G. Lorentz, "Bernstein Polynomials," Mathematical Expositions, Vol. 8, 1953.
8. Yongsheng Sun, "Approximation Theory of Functions," Vol. I, Beijing Normal Univ. Press, Beijing, 1989. [In Chinese]
9. Z. Ziegler, Linear approximation and generalized convexity, J. Approx. Theory 1 (1968), 420-433.

[^0]: ${ }^{1}$ Project 19601025 supported by the National Natural Science Foundation of China and Project 1952003 supported by the Natural Science Foundation of Beijing.

